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Abstract. The advent of embedded stereo cameras based on low-power and
compact devices such as FPGAs (Field Programmable Gate Arrays) has enabled
to effectively address several computer vision problems. However, being the depth
data generated by stereo algorithms affected by errors, reliable strategies to de-
tect wrong disparity assignments by means of confidence measures are desirable.
Recent works proved that confidence measures are also a powerful cue to im-
prove the overall accuracy of stereo. Most approaches aimed at predicting match
reliability rely on cost volume analysis, an information seldom available as out-
put of most embedded depth sensors. Therefore, in this paper we analyze and
evaluate strategies compatible with the constraints of embedded stereo cameras.
In particular, we focus our attention on methods to infer match reliability inside
depth sensors based on highly constrained computing architectures such as FP-
GAs. We quantitatively assess, on Middlebury 2014 and KITTI 2015 datasets, the
impact of different design strategies for 16 confidence measures from the litera-
ture, suited for implementation on such embedded systems. Our evaluation shows
that, compared to the confidence measures typically deployed in this context and
based on storing intermediate results, other approaches yield much more accurate
predictions with negligible computing requirements and memory footprint. This
enables for their implementation even on highly constrained architectures.

1 Introduction

The recent availability of embedded depth sensors paved the way to a variety of com-
puter vision applications for autonomous driving, robotics, 3D reconstruction and so
on. In these application depth is crucial and several approaches have been proposed
to tackle this problem following two main strategies. On one hand Active sensors in-
fer depth by perturbing the sensed scene by means of structured light, laser projection
and so on. On the other hand, passive depth sensors infer depth not altering at all the
sensed environment. Although sensors based on active technologies are quite effective
they have some limitations. In particular, some of them (e.g., Kinect) are not suited for
outdoor environments during daytime while others (e.g., LIDAR) provide only sparse
depth maps and are quite expensive, cumbersome and containing moving mechanical
parts.

Stereo vision is the most popular passive technique to infer dense depth data from
two or more images. Many algorithms have been proposed to solve the stereo cor-
respondence problem, some of them particularly suited for hardware implementation,
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thus enabling the design of compact, low-powered and real-time depth sensors [7], [10],
[2], [4], [24], [22], [26]. Despite the vast literature in this field, challenging conditions
found in most practical applications represent a major challenge for stereo algorithms.
Popular benchmarks Middlebury 2014 [21] and KITTI 2015 [11] clearly highlighted
this fact. Therefore, regardless of the stereo algorithm deployed, it is essential to detect
its failures to filter-out wrong unreliable points that might lead to a wrong interpre-
tation of the sensed scene. To this aim, confidence measures have become a popular
topic on recent works concerning stereo. Some recent confidence measures combine
multiple features within random forest frameworks to obtain more reliable confidence
scores while an even more recent trend aims to infer confidence prediction leveraging
on Convolutional Neural Networks (CNN) [19], [23]. Despite their effectiveness, the
latter strategies are often not compatible with the computing resources available in-
side the depth sensor, typically a low cost FPGA or a System-On-Chip (SoC) based on
ARM CPU cores and an FPGA (e.g., Xilinx Zynq). Moreover, the features required by
most of these machine-learning frameworks are not available as output of the embedded
stereo cameras being in most cases computed from the cost volume (often referred to
as disparity space image (DSI) [20]).

Therefore, in this paper we consider a subset of confidence measures compati-
ble with embedded devices evaluating their effectiveness, on two popular challenging
datasets and two algorithms typically deployed for real-time stereo for embedded sys-
tems, focusing our attention on issues related to their FPGA implementation. Our study
highlights that some of the considered confidence measures, appropriately modified to
fit with typical hardware constraints found in the target architectures, clearly outperform
those currently deployed in most embedded stereo cameras.

2 Related Work

Stereo represents a popular and effective solution for depth estimation. It exploits epipo-
lar geometry to find corresponding pixels on two or multiple synchronized frames, thus
enabling to infer distance of the observed points by means of triangulation. Accord-
ing to the taxonomy by Scharstein and Szeliski [20], algorithms can be grouped into
local and global methods. Algorithms belonging to the former group are usually very
fast algorithms but typically less accurate than global ones. The Semi-Global Match-
ing (SGM) [6] algorithm represents a very good trade-off between speed and accuracy
and for this reason one of the most popular approach to infer depth even with embed-
ded devices. The core of SGM algorithms consists of multiple and independent scan-
line optimization (SO) [20] along different directions. Each SO is fast, but affected by
streaking artifacts near discontinuities. However, by combining multiple SOs as done
by SGM significantly softens this issue. Moreover its computational structure allows
for different optimization strategies and simplifications that enabled to implement it on
almost any computing architecture (e.g., CPUs, GPUs, SoC, FPGAs). In particular, low
power and massively parallel devices such as FPGAs represents a very good design
choice for depth sensors with optimal performance/Watt. Examples of stereo pipeline
based on SGM mapped on FPGAs are [2], [4], [24], [22], [7], [26], [10]. Some of them
deploy hardware-friendly implementations, based on census transform [28] and 4 or 5
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scanlines computed in a single image scan from top-left to bottom-right. On FPGAs a
smart design is crucial in order to achieve accurate real-time results without violating
the limited logic resource available.

Despite the good accuracy of SGM and state-of-the-art algorithms [29], stereo is
still an open problem, as witnessed by recent, challenging datasets [21], [11]. Thus, de-
tecting failures of the stereo algorithm is a desirable property to achieve a more mean-
ingful understanding of the sensed environments.

Several confidence measures have been proposed to tackle match reliability. In [8]
the authors highlighted how different cues available inside the pipeline of general-
purpose stereo algorithms implemented in software lead to different degrees of effec-
tiveness on well-known ill-conditions of stereo such as occlusions, lack of texture and
so on. Most recent proposals in this field proved that machine-learning can be effec-
tively deployed to infer more accurate confidence measures, capable to better detect
disparity errors. The very first work [5] trained a random forest classifier on multiple
measures or features extracted from the DSI. More recent and effective proposals based
on this strategy were proposed in [25] and [15], while in [18] was shown that a con-
fidence measure could be effectively inferred by processing cues computed only from
the disparity map. In [14] was proposed a data generation process based on multiple
view points and contradictions, to select reliable labels to train confidence measures
based on random forests. Latest works on confidence measures rely on deep-networks:
[19] and [23] address confidence estimation by means of a CNN processing patches,
respectively, from the left disparity map and from both left and right disparity maps.

Finally, we conclude this section observing that confidence measures have been
deployed to detect occlusions [6], [13] and sensors fusion [9], [12]. Moreover, they
were also plugged inside stereo pipeline to improve the overall accuracy by acting on
the initial DSI [16], [25], [15], [18].

3 Hardware strategies for confidence implementation

When dealing with conventional CPU based systems confidence measures are gener-
ally implemented in C, C++ and to maintain the whole dynamic range single or double
floating point data types are deployed. However, floating point arithmetic is sometimes
not available in embedded CPU and generally unsuited to FPGAs. In particular, tran-
scendental functions and divisions represent major issues when dealing with such de-
vices. To overcome these limitations, fixed point arithmetic is usually deployed [1].
Fixed point represents an efficient and hardware-friendly way to express and manipu-
late fractional numbers with a fixed number of bits [1]. Indeed, fixed-point math can be
represented with an integer number split into two distinct parts: the integer content (I),
and the fractional content (F). Through the simple use of integer operations, the math
can be efficiently performed with little loss of accuracy taking care to use a sufficient
number of bits. The steps required to convert a floating point value to the corresponding
fixed representation with F bits - the higher, the better in terms of accuracy - are the
following:

1. Multiply the original value by 2F
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2. Round the result to the closest integer value
3. Assign this value into the fixed-point representation

Fixed point encoding greatly simplifies arithmetic operations with non-integer val-
ues, but integer divisions can be demanding - in particular on FPGAs - except when
dealing with divisors which are powers of 2. In fact, in this case division requires al-
most negligibly hardware resources being carried out by means of a simple right shift.
Thus, a simplified method to avoid integer divisions consists in rounding the dividing
value to the closest power of 2, then shifting right according to its log2. This strategy
will be referred to as pow.

Although fixed point increases the overall efficiency, some confidence measures
rely on transcendental functions (in particular, exponentials and logarithms) which rep-
resent an a further major issue even when dealing with CPU based systems. An effective
strategy to deal with such functions consists in deploying Look-Up Tables (LUTs) to
store pre-computed results encoded with fixed point arithmetic. That is, given a func-
tion F(x), with x assuming n possible values, a LUT of size n can store all the possible
outcome of such function. Of course, this approach is feasible only when the size of the
LUT (proportional to n) is compatible with the memory available in the device.

4 Confidence measures suited for hardware implementation

In this section we describe the pool of confidence measures from the literature suited for
implementation on target embedded devices. Figure 1 shows the matching cost curve
for a pixel of the reference image. Given a pixel p(x, y), we will refer to its mini-
mum cost as c1, the second minimum as c2 and the second local minimum as c2m. The
matching cost for any disparity hypothesis d will be referred to as cd while the disparity
corresponding to c1 as d1, the one corresponding to c2 as d2 and so on. If not specified
otherwise, costs and disparities are referred to the reference left image (L) of the stereo
pair. When dealing with right image (R), we introduce the R symbol on costs (e.g., cR1 )
and disparities. We denote as p′(x′, y′) the homologous point of p according to d1 (i.e.,
x′ = x−d1, y′ = y). It is worth to note that, assuming the right image as reference, the
matching costs can be easily obtained by scanning in diagonal the cost volume com-
puted with reference the left image without any further new computation. Nevertheless,
adopting this strategy would require an additional buffering of dmax·(dmax+1)

2 matching
costs with dmax the disparity range deployed by the stereo algorithm.

We distinguish the considered pool of confidence measures in two, mutually exclu-
sive, categories:

– Hardware friendly: confidence measures whose standard implementation is fully
compliant with embedded systems.

– Hardware challenging: confidence measures involving transcendental functions and/or
floating point divisions not well suited for embedded systems in their conventional
formulation.
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Fig. 1. Example of cost curve, showing the matching cost c1, the second minimum c2 and the
second local minimum c2m. On x axis the disparity range, on y magnitude of the costs.

4.1 Hardware friendly

This category groups confidence measures involving simple math operations that do not
represent issues when dealing with implementation on embedded systems. The match-
ing score measure (MSM) [8] negates the minimum cost c1 assuming it related to the
reliability of a disparity assignment. Maximum margin (MM) estimates match uncer-
tainty by computing the difference between c2m and c1 while its variant maximum
margin naive (MMN) [8] replaces c2m with c2. Given two disparity maps computed
by a stereo algorithm assuming as reference L and R, the left-right consistency (LRC)
[8] sets as confidence the negation of the absolute difference between the disparity of
a point in L and its homologous point in R. This method represents one of the most
widely adopted strategy by most algorithms even for those implemented on embedded
devices. Another popular and more efficient strategy based on a single matching phase
is the uniqueness constraint (UC) [3]: it assumes as poorly confident those pixels col-
liding on the same point of the target image (R) with the exception of the one having
the lowest c1. Curvature (CUR) [8] and local curve (LC) [27] analyze the behavior of
the matching costs in proximity of the minimum c1 and its two neighbors at (d1-1) and
(d1+1) according to two similar strategies. Finally, number of inflections (NOI) [8] sim-
ply counts the number of local minima in the cost curve assuming that the lower, the
more confident is the disparity assignment.

4.2 Hardware challenging

Confidence measures belonging to this category can not be directly implemented in em-
bedded systems following their original formulation. We consider peak ratio (PKR) [8]
which computes the ratio between c2m and c1 and its variant peak ratio naive (PKRN)
[8] which replaces c2m with the second minimum c2. According to the literature, these
measures are quite effective but seldom deployed in embedded stereo cameras. Another
popular measure is winner margin measure (WMN) [8] which normalizes the difference
between c2m and c1 by the sum of all costs. Its variant winner margin measure naive
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(WMNN) [8] follows the same strategy replacing c2m with c2. The left-right difference
measure (LRD) [8] computes the difference between c2 and c1 divided by the abso-
lute difference between c1 and the minimum cost of the homologous point in R (cR1 ).
For these confidence measures the major implementation issue on embedded systems is
represented by the division. For the remaining confidence measures the main problem is
represented by transcendental functions: exponentials and logarithms. Maximum likeli-
hood measure (MLM) [8] and attainable maximum likelihood (AML) [8] infer from the
cost curve a probability density function (pdf) related to an ideal c1, respectively, equal
to zero for MLM and to c1 for AML. A more recent and less computational demanding
approach perturbation (PER) [5], encodes the deviation of the cost curve from a Gaus-
sian function ant its implementation requires a division by a constant value suited for
a LUT-based strategy. Finally, we also mention two very effective confidence measures
based on distinctiveness, namely distinctive similarity measure (DSM) and self-aware
matching measure (SAMM) and one negative entropy measure (NEM) [8] that infers
the degree of uncertainty of each disparity assignment from the negative entropy of c1.
However, they require additional cues (e.g., self-matching costs on both reference and
target images for SAMM) not well suited to embedded systems and thus not included
in our evaluation.

5 Experimental results

In this section we evaluate the 16 confidence measures previously reviewed and imple-
mented following the design strategies outlined so far. We test their effectiveness with
the output of two popular stereo algorithms well-suited for implementation on embed-
ded systems:

– AD-CENSUS: aggregates matching costs according to the Hamming distance com-
puted on 5 × 5 patches with census transform [28]. A further aggregation step is
performed by a 5× 5 box-filter. To reduce the amount of bits required by the single
matching cost, we normalized aggregated costs by the dimension of the box-filter
(to be more hardware-friendly, by 16), with negligible reduction of accuracy ac-
cording to [17].

– SGM [6]: four scanline implementation using as data term the same AD-CENSUS
aggregated costs and for parameters P1 and P2, respectively, 11 and 110. The four
directions are those processed by scanning the image from top-left to bottom-right
as suggested in [2, 10, 17].

We encode matching costs with, respectively, 6 and 8 bit integer values, being this
amount enough to encode the entire ranges. Regarding parameters of the confidence
measures: for LC, we set the normalization factor γ to 1 to avoid division, while for
PER, MLM and AML we set sPER to 1.2 and σaml, σmlm to 2 before initializing the
LUTs. The other 12 confidence measures do not have parameters.

For CUR, LRC, LC, MM, MMN, MSM, NOI and UC we provide experimental re-
sults with the conventional implementation since their mapping on embedded devices
is totally equivalent. Moreover, regarding PER, we do not report results concerned with
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measure standard
Opt. 0.08891
CUR 0.24377 (14)
LRC 0.19933 (7)
LC 0.24377 (15)

MM 0.17765 (6)
MMN 0.19933 (8)
MSM 0.23182 (13)
NOI 0.39053 (16)
UC 0.20974 (10)

measure standard
Opt. 0.08891
AML 0.21173 (11)
LRD 0.17004 (3)
MLM 0.22413 (12)
PER 0.20687 (9)
PKR 0.16250 (1)

PKRN 0.17185 (5)
WMN 0.16503 (2)

WMNN 0.17169 (4)

measure standard
Opt. 0.04367
CUR 0.11602 (11)
LRC 0.16853 (15)
LC 0.11602 (12)

MM 0.09371 (5)
MMN 0.12920 (14)
MSM 0.10181 (7)
NOI 0.32028 (16)
UC 0.10347 (9)

measure standard
Opt. 0.04367
AML 0.08843 (3)
LRD 0.11725 (13)
MLM 0.09567 (6)
PER 0.08766 (1)
PKR 0.08813 (2)

PKRN 0.10527 (10)
WMN 0.08898 (4)

WMNN 0.10232 (8)
(a) (b)

Table 1. Experimental results, in terms of AUC, on Middlebury 2014 dataset with AD-CENSUS
(a) and SGM (b) algorithms for the 16 confidence measures using a conventional software imple-
mentation. In red, top-performing measure. We also report the absolute ranking.

division by the closest power of two being the divisor a constant value and thus such op-
eration can be addressed with a LUT. Finally, it is worth observing that most embedded
stereo vision systems rely on LRC [7, 2] and UC [10, 2] for confidence estimation.

In section 5.1 we describe the evaluation protocol and in section 5.2 we report ex-
perimental results on Middlebury 2014 (at quarter resolution) and KITTI 2015 datasets
for AD-CENSUS and SGM algorithms.

5.1 Evaluation protocol

The standard procedure to evaluate the effectiveness of a confidence measure is the
ROC curve analysis, proposed by Hu and Mordohai [8] and adopted by all recent works
[5], [25], [15], [19], [18], [23] in this field. By extracting subsets of pixels from the dis-
parity map, according to descending order of confidence, a ROC curve is depicted by
computing the error rate, starting from a small subset of points (i.e., 5% most confident)
and then increasing the pool of pixels iteratively, up to include all pixels. This leads to a
non-monotonic ROC curve, whose area (AUC) is an indicator of the effectiveness of the
confidence measure. Given a disparity map with ε% of pixels being erroneous, an op-
timal confidence measure should draw a curve which is zero until ε% pixels have been
sampled. The area of this curve represents the optimal AUC achievable by a confidence
measure and can be obtained, according to [8], as:

AUCopt =

∫ ε

1−ε

p− (1− ε)
p

dp = ε+ (1− ε) ln (1− ε) (1)

As reported on Middlebury 2014 and KITTI 2015 benchmarks, ε is obtained by
fixing a threshold value on disparity error of, respectively 1 and 3 for the two datasets
following the guidelines. Confidence measures achieving lower AUC values (closer to
optimal) better identify wrong disparity assignments.
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Fig. 2. Average AUC values on the Middlebury 2014 dataset for hardware challenging measures,
varying the implementation settings (i.e., pow and number of bits of fixed-point arithmetic). (a)
AD-CENSUS, (b) SGM algorithm.

5.2 Experimental evaluation on Middlebury 2014 and KITTI 2015

In this section we report results on Middlebury 2014 and KITTI 2015 datasets in terms
of average AUC values achieved by confidence measures implemented in software. For
hardware challenging measures of section 4.2 we also report multiple AUC obtained
with increasing number of bits dedicated to fixed point operations (i.e., from 6 to 16
for AD-CENSUS and from 8 to 16 for SGM, so as to handle the whole cost range).
Moreover, for such measures, we also report the results obtained by rounding to the
closest power of 2 and, then, shifting right (referred to as pow in the charts).

Table 1 shows for Middlebury 2014 that LRC and UC, confidence measures typi-
cally deployed in embedded stereo cameras, are less effective than MM, LRD, PKR,
PKRN, WMN, WMNN with AD-CENSUS and MM, MSM, AML, MLM, PER, PKR,
WMN, WMN with SGM. We can notice that LRC provides poor confidence estimation
with SGM but achieves better results with AD-CENSUS while UC has average perfor-
mance with both algorithms. Considering the more effective confidence measures in the
table, we can notice that PKR and WMN, as well as their naive formulations, performs
pretty well with both algorithms clearly providing much more accurate confidence es-
timation compared to LRC and UC. Moreover, we can notice that PER achieves the
best performance with SGM but it does not perform as well with AD-CENSUS, yield-
ing slightly better confidence predictions with respect to UC. Specularly, LRD provides
very reliable predictions with AD-CENSUS but poor results with SGM. Finally, we
point our that top-performing confidence measures always belong to the hardware chal-
lenging category.
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measure standard
Opt. 0.08055
CUR 0.30692 (14)
LRC 0.20018 (2)
LC 0.30692 (15)

MM 0.20601 (4)
MMN 0.24588 (11)
MSM 0.25571 (13)
NOI 0.31160 (16)
UC 0.22324 (8)

measure standard
Opt. 0.04367
AML 0.23053 (10)
LRD 0.20706 (5)
MLM 0.25180 (12)
PER 0.22575 (9)
PKR 0.19821 (1)

PKRN 0.20931 (7)
WMN 0.20221 (3)

WMNN 0.20795 (6)

measure standard
Opt. 0.01618
CUR 0.08585 (11)
LRC 0.10377 (15)
LC 0.08585 (12)

MM 0.06374 (8)
MMN 0.09549 (14)
MSM 0.05999 (5)
NOI 0.16308 (16)
UC 0.06310 (7)

measure standard
Opt. 0.01618
AML 0.05738 (2)
LRD 0.08744 (13)
MLM 0.05889 (3)
PER 0.05657 (1)
PKR 0.06003 (6)

PKRN 0.07611 (10)
WMN 0.05970 (4)

WMNN 0.07149 (9)
(a) (b)

Table 2. Experimental results, in terms of AUC, on KITTI 2015 dataset with AD-CENSUS (a)
and SGM (b) algorithms for the 16 confidence measures using a conventional software imple-
mentation. In red, top-performing measure. We also report the absolute ranking.

Therefore, in Figure 2 we report the performance of hardware challenging confi-
dence measures, on Middlebury 2014 with AD-CENSUS and SGM, with multiple sim-
plification settings. Observing the charts, PER is independent of the adopted strategy,
being based on a LUT. Moreover, excluding PER, we can notice that the best perform-
ing ones (PKR, PKRN, WMN and WMNN at the right side of the figure) are those less
affected by the number of bits deployed for fixed-point computations, thus resulting in
reduced computational resources. In particular, we can observe that with only 8 bits,
PKR and WMN achieve with both algorithms results almost comparable to their con-
ventional software implementation. A similar behavior can be observed, with slightly
worse performance, for their naive formulation PKRN and WMNN and for LRD that,
excluding PER, is the approach less dependent of the number of bits. On the other
hand, AML e MLM with both algorithms are significantly affected by the number of
bit deployed for their implementation achieving results comparable to their traditional
software formulation, respectively, only with 13 and 16 bits. Finally, excluding PER,
we can observe that dividing by a power of 2 always provides poor results with re-
spect to other simplifications. However, we highlight that even with this very efficient
implementation strategy, PKR, WMN outperform LRC and UC with both stereo algo-
rithms. Thus, trading simplified computations with memory footprint leads to design
better alternatives to standard confidence measures for embedded systems.

Table 2 reports the average AUCs for the two considered stereo algorithms on KITTI
2015 for software implementation of the 16 confidence measures. Compared to Table
1 we can notice a similar behavior with a notable difference. In fact, observing Table
2 we highlight that LRC achieves almost optimal results on AD-CENSUS but yields
very poor performance with SGM. Looking at the behavior of the hardware challeng-
ing measures, reported in Figure 3, we observe on KITTI 2015 a substantially similar
behavior with respect to Figure 2 concerned with Middlebury 2014.
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Fig. 3. Average AUC values on the KITTI 2015 dataset for hardware challenging measures, vary-
ing the implementation settings (i.e., pow and number of bits of fixed-point arithmetic). (a) AD-
CENSUS, (b) SGM algorithm.

6 Conclusions

In this paper we have evaluated confidence measures suited for embedded stereo cam-
eras. Our analysis shows that conventional approaches, LRC and UC, are outperformed
by other considered solutions, whose implementation on embedded devices enables to
achieve more accurate confidence predictions with a negligible amount of hardware re-
sources and/or computations. In particular, according to our evaluation on Middlebury
2014 and KITTI 2015, PKR and WMN represent the overall best choice when dealing
with two popular algorithms, AD-CENSUS and SGM, frequently deployed for embed-
ded stereo systems.
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