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Learning a confidence measure in the disparity domain from O(1) features
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ABSTRACT

Depth sensing is of paramount importance for countless applications and stereo represents a popu-
lar, effective and cheap solution for this purpose. As highlighted by recent works concerned with
stereo, uncertainty estimation can be a powerful cue to improve accuracy in stereo. Most confidence
measures rely on features, mainly extracted from the cost volume, fed to a random forest or a convo-
lutional neural network trained to estimate match uncertainty. In contrast, we propose a novel strategy
for confidence estimation based on features computed in the disparity domain, making our proposal
suited for any stereo system including COTS devices, and in constant time. We exhaustively assess
the performance of our proposals, referred to as O1 and O2, on KITTI and Middlebury datasets with
three popular and different stereo algorithms (CENSUS, MC-CNN and SGM), as well as a deep stereo
network (PSM-Net). We also evaluate how well confidence measures generalize to different environ-

ments/datasets.

(© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Depth sensing represents a crucial step for many high-level
computer vision applications and stereo is a popular technique
to infer dense depth maps from two or more images of the same
scene. However, despite a large amount of research in this field,
it is still an open problem in particular when facing real applica-
tions. This fact clearly stands out dealing with challenging and
realistic datasets (Geiger et al., 2013; Menze and Geiger, 2015;
Scharstein et al., 2014) on which most stereo algorithms still
fail in poorly textured regions, occluded areas and in the pres-
ence of other ambiguous elements such as reflective surfaces
and so on. Despite Convolutional Neural Networks (CNNs)
represent state-of-the-art for disparity estimation, they often re-
quire power-hungry GPUs and thus they are not suited for most
practical applications, whereas traditional algorithms such as
Semi-Global Matching (SGM, by Hirschmuller (2008)) can be
effectively implemented on a broad range of devices including
low-power systems.

For the reasons outlined, it is also essential to infer the de-
gree of depth uncertainty through confidence measures. Such
methods have been extensively reviewed and evaluated by
Hu and Mordohai (2012) and more recently by Poggi et al.
(2017b).  Learning-based confidence measures, leveraging
random-forests or CNNs, enabled to improve results achieved
by traditional measures significantly. Compared to CNN meth-
ods, approaches based on random forests are potentially faster

although most of them less effective. According to Poggi et al.
(2017b) learning-based methods processing cues in the dispar-
ity domain outperform in most cases approaches based on cost
volume analysis. Moreover, such latter input cue is not always
available, for instance when dealing with commercial-off-the-
shelf (COTS) stereo cameras such as RealSense or Zed camera
providing as output only a single disparity map. Therefore, con-
fidence measures inferred from features computed in the dispar-
ity domain only are highly desirable.

In addition to outlier detection, confidence measures also
proved to be an excellent cue to improve the accuracy of tra-
ditional, yet very popular in many practical applications, stereo
algorithms. Such a strategy is particularly appealing when hard-
ware requirements or training issues preclude the deployment
of deep networks for depth estimation.

This paper describes a novel methodology, preliminarily pro-
posed in (Poggi and Mattoccia, 2016b), to infer a confidence
measure by feeding a random forest classifier with hand-crafted
features extracted, in constant time, in the disparity domain.
Figure 1 depicts an overview of our strategy: different features
are computed on patches of increasing size to obtain mean-
ingful information fed to a random-forest classifier. More-
over, we also propose an effective strategy to improve the accu-
racy of SGM by applying a smarter scanline aggregation step,
namely smart-SGM (sSGM). We assess the performance of the
proposed confidence estimation methodology on three stereo
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Fig. 1. Overview of the proposed features extraction strategy. Given a disparity map related to the reference image, a confidence measure is learned from

features computed in constant time on patches of increasing size.

datasets (KITTI 2012, 2015 and Middlebury v3) and three well-
known and popular stereo algorithms (CENSUS, MC-CNN
and SGM), as well as a deep stereo network, PSM-Net by
Chang and Chen (2018), characterized by a substantially dif-
ferent accuracy. We also profoundly analyze how well the pro-
posed confidence strategy generalizes across different datasets.
Purposely, we cross-evaluate confidence measures training on
KITTT and testing to Middlebury and vice-versa. Moreover, on
the same datasets, we extensively evaluate the performance of
the proposed smart aggregation strategy as well as of learning-
based variants of SGM, proving the superiority of our proposal.

2. Related Work

In this section, we review the literature concerned with stereo
matching, confidence measures and disparity refinement meth-
ods since all these fields are related to our work.

In the taxonomy proposed by (Scharstein and Szeliski, 2002),
stereo algorithms are categorized into two broad categories, lo-
cal and global methods. Both perform a subset of the follow-
ing four steps: 1) matching cost computation, 2) cost aggre-
gation, 3) disparity computation/optimization and 4) disparity
refinement. The SGM algorithm (Hirschmuller, 2008) repre-
sents a good trade-off between accuracy and execution time.
It independently enforces a smoothness constraint on multi-
ple paths employing the Scanline Optimization (SO) algorithm
(Scharstein and Szeliski, 2002), summing up each contribu-
tion and assigning disparity according to the Winner-Take-All
(WTA) strategy. Due to its relevance in this field and its favor-
able computational structure, SGM has been implemented on
almost any computing architectures such as GPUs by Zbontar
and LeCun (2016), FPGAs by Banz et al. (2010); Gehrig et al.
(2009) and other embedded devices whereas mapping end-to-
end deep stereo networks would have been hardly feasible in
most of the same target devices. Each single SO at the core

of SGM is extremely fast but frequently leads to streaking ar-
tifacts. SGM partially attenuates this issue by summing up in-
dependent optimization over multiple paths. Banz et al. (2012)
tackled such problem by carefully tuning the smoothing penal-
ties according to the image content, Spangenberg et al. (2013)
proposed weighted-SGM aimed at adapting the cost of each
path according to its fitting with the surface normal while Fac-
ciolo et al. (2015) adopted a more global strategy.

Although several matching cost functions have been pro-
posed (Hirschmller, 2007), CNN-based methods (Zbontar and
LeCun, 2016; Chen et al., 2015; Luo et al., 2016; Shaked and
Wolf, 2017; Gidaris and Komodakis, 2017) recently outper-
formed conventional ones. Further developments in this field
lead to end-to-end networks able to infer a dense disparity map
from a stereo pair without deploying the conventional steps
highlighted by Scharstein and Szeliski (2002). In particular,
Mayer et al. (2016) proposed DispNet, a fast and accurate ar-
chitecture achieving quite accurate results at 15+ fps on a GPU.
Following this strategy, Kendall et al. (2017) and Pang et al.
(2017) proposed 3D convolutions and a multi-staged architec-
ture respectively. Nowadays end-to-end CNNs represents the
undisputed state-of-the-art on KITTI (Chang and Chen, 2018;
Liang et al., 2018; Tonioni et al., 2019; Guo et al., 2019; Zhang
et al., 2019; Poggi et al., 2019), despite their hardware require-
ments make them unsuited to most practical applications.

Strictly linked to stereo algorithms are confidence measures.
Conventional approaches have been initially reviewed and eval-
uated by Hu and Mordohai (2012). Eventually, it has been
shown that combining multiple confidence measures and hand-
crafted features within random forest frameworks yields signif-
icant improvements (Haeusler et al., 2013; Spyropoulos et al.,
2014; Park and Yoon, 2015). A significant departure from this
strategy was proposed by our previous work (Poggi and Mat-
toccia, 2016b) computing features in the disparity domain only.
Deep-learning played an important role as well enabling to infer
accurate confidence measures by processing patches extracted



from the disparity map (Poggi and Mattoccia, 2016¢; Seki and
Pollefeys, 2016) or global cues extracted from the same do-
main (Tosi et al., 2018), exploiting local consistency of confi-
dence maps (Poggi and Mattoccia, 2017) and combining mul-
tiple confidence measures (Poggi et al., 2017a). Given the fast
progress in this field, Poggi et al. (2017b) exhaustively reviewed
and evaluated conventional and learning-based confidence esti-
mation strategies, highlighting that methods working in the dis-
parity domain are typically more effective than those relying on
features computed from the cost volume.

Confidence measures have been deployed for several pur-
poses: to improve stereo accuracy detecting reliable ground
control points (Spyropoulos et al., 2014; Spyropoulos and Mor-
dohai, 2016), to smooth the cost curve (Park and Yoon, 2015),
to improve SGM (Poggi and Mattoccia, 2016b; Seki and Polle-
feys, 2016) or to fuse multiple depth maps computed by dif-
ferent stereo algorithms (Poggi and Mattoccia, 2016a) or depth
sensors (Marin et al., 2016). Moreover, confidence estimation
has been used to replace depth labels when adapting deep stereo
networks (Tonioni et al., 2017) to unseen environments and for
the training of learning-based confidence measures (Tosi et al.,
2017).

3. Learning confidence measures in the disparity domain

Combining confidence measures and hand-crafted features
with random forest classifiers proved to be very useful for ac-
curate confidence prediction. However, such methods compute
cues from the cost volume thus making them not suited for con-
fidence prediction when only a disparity map is given. For in-
stance, such circumstance occurs when COTS devices compute
the disparity map, the source code is not provided, the cost vol-
ume used to compute the disparity map is no longer available
or the disparity map is computed remotely and thus sending the
huge cost volume is not feasible. Therefore, our proposal is
a significant departure from previous methods (Haeusler et al.,
2013; Spyropoulos et al., 2014; Park and Yoon, 2015) being a
random forest classifier fed with features uniquely extracted in
the reference disparity domain and in constant time. Moreover,
it not only outperforms methods based on random forests but
it also compares favorably to more complex methods based on
CNNEs.

3.1. Constant time features inferred from the disparity map

We argue that the local behavior of disparity assignments
alone provides powerful enough cues to infer match reliabil-
ity. For instance, a pixel sharing the same disparity value with a
large number of neighboring pixels is more likely to be correct
than one sharing it with a few. This cue is particularly use-
ful on smooth or planar surfaces when the change of disparity
within nearby pixels is small. Furthermore, many different dis-
parity assignments to nearby pixels may suggest the evidence
of a noisy disparity pattern. Therefore, following these obser-
vations, for a pixel p(x,y) belonging to the input disparity map
P we encode the local behavior of its neighborhoods into a
pool of features computed in constant time at different scales.
For simplicity’s sake, we omit from now on pixel coordinates
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(x,y). Thus, given a local window W centered on p, we de-
fine Hqy as the histogram encoding the distribution of disparity
values d € [0, dyux] in ‘W and we refer to ‘W) as its cardinality

W= D, Hdw (1)

de[0,dyay]

Given this notation, we define the following features:
Disparity agreement (DA) encodes the number of neighbors
with the same disparity d(p) of the central pixel p:

DA(p)w = H(d(p))w 2

A larger amount of pixels sharing the same disparity with p
encodes a higher likelihood of correctness compared to pixels
with smaller support from neighbors.

Disparity scattering (DS) encodes how many different dis-
parity hypotheses appear in the neighborhood of p:

» P ] 1= 8t(a@n0)

DSN =1 s max 3
p 0g |(W| ( )
where 6 is Kronecker delta function, 1 when no pixel has
disparity equal to d (i.e., when H(d)4y is 0). According to such
definition, a patch of |'W| pixels in complete disagreement with
d(p) yields a DS value equal to zero. The lower is the number

of different hypotheses within W, the higher is the DS score.
Median disparity (MED) encodes the median of the distri-
bution of disparity hypotheses within the patch ‘W centered in

p:

MED(p)yw = median(H (d)w) G))

Variance of the disparity values (VAR) (Park and Yoon,
2015) encodes the sparseness of disparity assignments within

w:

1
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Disparity deviation from median (MDD) (Spyropoulos
et al., 2014) is the negative of the absolute difference between
the disparity in p and the median disparity value within patch
W:

MDD(p) = - | d(p) = MED(p)w | (7

Distance from left border (DLB) (Spyropoulos et al., 2014)
assigns lower reliability to pixels closer to the left border where
not all the potential candidates are available in the target image.
DLB is encoded by the x pixel coordinate, truncated to d,.:

DLB(P) = min(x, dmax) (8)

Uniqueness constraint (UC) (Di Stefano et al., 2004) de-
tects violation of the assumption that each pixel on the target



image can have, at most, one correspondence in the reference
image:

(0, iflQ#0
Ucp _{ 1, otherwise

with Q the set of pixels on reference image having the same
destination in the target image.

Other cues computed in the image or disparity domain (Poggi
et al., 2017b) such as horizontal gradient magnitude (Haeusler
et al., 2013), distance to edges or distance to discontinuities
(Spyropoulos et al., 2014) did not yield significant improve-
ments in our experiments, while other traditional measures
(Poggi et al., 2017b) are not compliant with our input domain
(e.g., LRC requires the target disparity map, usually not avail-
able from COTS stereo cameras). By deploying histogram-
based optimization (Kass and Solomon, 2010) or box-filtering
techniques, all features are computed in constant time regard-
less of the patch size.

01 and O2 confidence measures. In this section we outline
the feature vectors, fed to a random forest classifier trained in
regression mode, to infer two confidence measures referred to
as O1, as originally proposed by Poggi and Mattoccia (2016b),
and O2 proposed in this paper. Local cues computed at differ-
ent scales allow to effectively discriminate disparity distribu-
tions peculiar of specific image regions such as planar surfaces
and discontinuities. Therefore, we include multiple instances of
DA, DS, MED, VAR and MDD features computed on patches
of increasing size as depicted in Figure 1.

For O1 (Poggi and Mattoccia, 2016b) we define a set
of local windows W, of size (3 + 2i) x (3 + 2i) (e,
for i € [1.4] we have 5 x5, 7x 7, 9 x9 and 11 x 11
windows) obtaining a feature vector fp; of 20 elements
including DA, DS, MED, VAR and MDD at four scales
for = (DA, .. DS(P)w, .. MED(p)ay, ,. VAR(Paw, .
MDD(p)w, ,}. We also propose an extended feature vec-
tor fpo made of 47 features including additional cues
DLB, UC and a larger number of scales with size up to
21 x 21 (e.g., the set of windows W, for i € [1.9]). It
allows for a larger receptive field compared to fp;, that
proved to be effective for deep learning methods (Poggi
and Mattoccia, 2016¢) and (Tosi et al., 2018) as well. We
refer to this methods as O2 and its feature vector is fpo =

€))

{DA(P)w, 5 DS (P)w, s MED(p)w, o, VAR(D)w, o. MDD(p)y,

DLB,UC}. This configuration was chosen after exhaustively
experimenting with different scales and their combinations.
In particular, we found out that considering neighborhoods
larger than 21 X 21 does not increase accuracy significantly
(or may even lead to poor results) while removing some ‘W;
always yields worse performance compared to fp,. Moreover,
including DLB and UC to fp, allows, in some circumstances,
to further improve the overall effectiveness. In particular, DLB
near the left border while UC near depth discontinuities.

4. Smart Semi Global Matching

SGM (Hirschmuller, 2008) represents an excellent trade-off
between accuracy and computational complexity and conse-
quently prevalent in most practical applications. Moreover,

Fig. 2. Examples of streaking artifacts on a stereo pair of the KITTI
dataset. Top: stereo pair. Middle: disparity maps computed by SO al-
gorithm along two paths. Bottom: corresponding O2 confidence maps.

many top-performing algorithms still rely on such a method
to obtain compelling results on standard evaluation datasets
(Geiger et al., 2013; Menze and Geiger, 2015; Scharstein et al.,
2014). For each pixel p, SGM combines the outcome of
multiple energy minimizations computed by independent SO
(Scharstein and Szeliski, 2002) instances on different paths
s € S, typically 8 or 16 according to Hirschmuller (2008).
Each SO, within the disparity range [0, d,,,,] and along each
path s € S, performs for each pixel p a disparity optimization
according to the following energy term E(p, d),

Eyp,d) = c(p,d) + min{Es(p', d),E(p’,d+1)+ Pl,

. Eg /’. +P2 _ . Ey I’- 10
ié[dIPll,I(}H]( (P )} ie[%,lcligml( (- 0) (10)

where p’ represents the previous pixel along the path and
c(p,d) the point-wise or aggregated matching cost computed,
for each disparity d € [0,d,,.], between reference and tar-
get corresponding pixels along epipolar lines. Parameters P1
and P2 (P1 < P2) in (10) enforce smoothing by penalizing
disparity variations along the path. According to Hirschmller
(2007), among the many cost functions proposed for stereo
non-parametric approaches such as census perform very well
in challenging environments (Geiger et al., 2013; Menze and
Geiger, 2015; Scharstein et al., 2014). Compared to global ap-
proaches enforcing a smoothness term on a grid (i.e., 2D do-
main), SO is in most cases much less computationally demand-
ing. However, it is well-known that SO is prone to streaking
artifacts along the path direction, as shown in Figure 2. SGM
softens this effect by summing up, for each pixel p, the results
yielded by multiple SO instances.Finally, SGM infers disparity
for pixel p according to WTA.

The proposed sSGM (Poggi and Mattoccia, 2016b) aims at
tackling such issues by learning a smarter aggregation strat-
egy driven by the analysis of SOs computed along each path.
That is, given a pixel p, sSSGM aims at replacing the cost aggre-
gation performed by SGM on each path computed by the SO
algorithm with a strategy that takes into account the reliability
Cs(p) of each path s € § estimated by a confidence measure.
Specifically, for each p, we aggregate the SO costs according to
the following weighted sum:
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As reported in the experimental results, sSSGM coupled with
O1 or O2 enables to significantly outperforms any other SGM
variant known in the literature leveraging on confidence mea-
sures.

5. Experimental results

In this section, we report extensive experimental results con-
cerning our proposals. Firstly, we evaluate O1 and O2 confi-
dence measures on KITTI 2012, KITTI 2015 and Middlebury
v3 datasets with three popular stereo algorithms — CENSUS,
MC-CNN and SGM - and a deep stereo network — PSM-Net
— characterized by significantly different accuracy and strate-
gies to tackle the correspondence problem. Their performance
is compared to state-of-the-art confidence measures based on
random forest, deep learning and two conventional (i.e., not
learning-based) strategies PKRN and LRD. Moreover, we also
provide a detailed analysis concerning how Ol and O2 be-
have across datasets depicting very different environments (e.g.,
KITTIs vs Middlebury datasets). On the same datasets, we also
provide exhaustive experimental concerning sSGM and state-
of-the-art machine learning variants of SGM.

5.1. Evaluation of confidence measures

A well-established protocol to evaluate the effectiveness of
confidence measures consists in Area Under the Curve (AUC)
analysis proposed by Hu and Mordohai (2012), computed under
the curve plotted by sampling pixels in descending order of con-
fidence. The optimal AUC score is obtained as function of the
percentage ¢ of outliers having a disparity error larger than 7, as
e+(1-&)In(1 — &). Alower AUC corresponds to a better confi-
dence estimation capability. For each dataset and each stereo al-
gorithm, we report average AUC values on the whole dataset to
provide a synthetic score over a large set of images as common
in this field (Poggi et al., 2017b). Since the ground-truth dis-
parity is required for testing purposes, we always use the train-
ing set of each considered dataset. For instance, with KITTI
2015 we mean the KITTI 2015 training dataset. Regarding
the stereo algorithms deployed in our evaluation, we consider
three popular methods characterized by different degrees of ac-
curacy. For all the algorithms the disparity selection method is
WTA. The three algorithms are respectively CENSUS (Zabih
and Woodfill, 1994), obtained aggregating on 5 X5 support win-
dows the pointwise Hamming distance between 5 X 5 census
transformed images; SGM with eight scanlines and aggregated
matching costs computed as described for CENSUS. P1 and P2
are set, respectively, to 0.2 and 0.5 (Poggi et al., 2017b); MC-
CNN by Zbontar and LeCun (2016), a Siamese CNN in charge
of computing matching costs by processing 9 x 9 patches. For
our experiments, we deployed MC-CNN-fst using weights pro-
vided by the authors. Compared to MC-CNN-acrt this version
yields a slightly higher error rate (about 2%), but it is much
faster (about 100 times). Concerning PSM-Net, we used the
code made available by the authors Chang and Chen (2018) and
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weights trained on SceneFlow synthetic dataset Mayer et al.
(2016) and further fine-tuned on KITTI 2012. This deep net-
work leads to extremely accurate disparity estimation on KITTI
2012 itself, slightly less on KITTI 2015 and quite worse on
Middlebury. Moreover, we point out that with PSM-Net, we
can only evaluate confidence measures processing the left dis-
parity map and optionally the reference image. This constraint
occurs because the cost volume representation processed by the
network (and required by other random forest approaches) is
quite different from the one of traditional stereo algorithms and
the right disparity map is not available at all.

We trained O1 and O2 confidence measures with twenty
stereo pairs from the KITTI 2012 dataset, following the proto-
col outlined by Poggi et al. (2017b), thus providing to the ran-
dom forest about 2.7 million samples. We trained according to
the same protocol confidence measures based on random forest
(Haeusler et al., 2013; Spyropoulos et al., 2014; Park and Yoon,
2015) respectively referred to as ENS, GCP an LEV as well as
CNN-based approaches (Poggi and Mattoccia, 2016¢; Seki and
Pollefeys, 2016; Tosi et al., 2018) respectively referred to as
CCNN, PBCP and LGC. Moreover, the same measures trained
on KITTI 2012 are cross-validated on KITTI 2015 and Mid-
dlebury v3 (on this latter, we process quarter resolution images
to keep the same disparity range thus allowing a fair compari-
son). Such evaluation allows perceiving how confidence mea-
sures behave on environments different from those learned from
training samples, a circumstance often found in practical appli-
cations. Purposely, we will also report the gap between this
setup and training on the target environment.

Table 1 reports results concerning the AUC evaluation on the
three different datasets (excluding frames involved in training
for KITTI 2012), multiplied by a factor 10? to improve read-
ability. Each sub-table contains experiments using the three
stereo algorithms considered. For completeness, we include in
our evaluation PKRN and LRD as the baseline for conventional
confidence measures. For KITTI 2012 (left), average AUCs
have been computed on 174 stereo pairs, the first 20 out of 194
images have been deployed for training (Poggi et al., 2017b),
while on KITTI 2015 (center) we average over the entire train-
ing set of 200 images. The error threshold is set to 7 = 3,
compliant with the KITTI on-line evaluation benchmark, to dis-
tinguish inliers from outliers. As already highlighted in the lit-
erature, O1 yields good overall performance. It always outper-
forms other methods based on random forest and cost volume
analysis ENS, GCP, LEV (this latter method has slightly better
AUC in one case, SGM on KITTI 2012) proving the effective-
ness of extracting features in the disparity domain. Ol also
performs similarly to CNN-based method PBCP, being how-
ever outperformed by such method processing the noisy dispar-
ity maps provided by CENSUS. On the other hand, O2 always
outperforms O1 and PBCP. Moreover, it is substantially equiva-
lent to CCNN when dealing with smooth SGM disparity maps.
In this latter case, the larger receptive field of O2 allows for a
more effective confidence estimation. Concerning results using
PSM-Net, we point out the extremely low optimal AUC. Al-
though effective, all strategies arachieves AUC scores quite far
from the optimal (about one order higher on KITTI 2012 and



KITTI 2012 KITTI 2015 Middlebury v3
Algorithm CENSUS  SGM MC-CNN | PSM-Net CENSUS SGM MC-CNN | PSM-Net CENSUS  SGM MC-CNN | PSM-Net
PKRN 22.99 (10) 9.00(10) 9.85(10) | - 22.04 (10) 7.98(10) 9.86(10) | - 17.54(9) 1097 ()  11.08 (10) | -
LRD 1946 (9) 877(9) 7.48(9) - 1825(9) 735(9) 7.12(9) 15.19(8) 12.18(10) 9.85(9)
ENS 1644 (8) 7.63(8) 4.42(8) - 15108) 7.03(8) 4.62(8) 19.35(10) 11.93(9)  9.66 (8)
GCP 1513(7)  439(7) 415 - 1396 (7)  4.04(7) 437(7) 13.57(7) 1030(7)  8.08 (7)
LEV 1427 (6) 3.58(4) 3.48(6) - 13.17(6) 3.34(6) 3.64 (6) - 1297(6)  7.37(5) 7.26 (6) -
O1 13.09(5) 3.65(55) 3174 0.43 (4) 1128 (5) 3234) 3244 1.23(4) 1211 (4  6.09(3) 6.80 (4) 10.80 (4)
02 1293 (3) 343(2) 3.16(3) 0.39 (3) 1121 (3)  3.06(3) 3.16(3) 1.18 (3) 12.35(5)  7.84(6) 6.88 (5) 10.35 (1)
PBCP 1293 (4) 3.68(6) 3.21(5) - 1127 (4)  333(5) 3.33(5 - 11.60 (3)  6.11 (4) 6.52 (3) -
CCNN 1223 (2) 3.58(3) 297(2) 0.31(2) 1031 (2)  3.03(2) 297(2) 1.07 (2) 11.28(2)  595(2) 6.37 (2) 10.39 (3)
LGC 11.76 1) 2.78(1) 2.75(1) 0.27 (1) 10.04 (1) 2.78(1) 1.90(1) 1.04 (1) 11.09(1) 6.16(1) 6.09 (1) 10.36 (2)
Optimal 10.67 2.27 2.31 0.03 8.84 2.13 0.37 8.99 4.31 4.59 2.28

Table 1. Average AUC on KITTI 2012 (left), KITTI 2015 (center) and Middlebury v3 (right). For each confidence measure each column reports average
AUC and rank with CENSUS, SGM, MC-CNN and PSM-Net. Bottom row, optimal AUCs.

3x higher on KITTI 2015). As for traditional algorithms, O1
and O2 are competitive with deep learning solutions, although
slightly worse. Finally, the LGC network consistently ranks
first for each algorithm and both KITTI datasets thanks to its
more complex global reasoning.

On the Middlebury v3 dataset (right), we deal with image
content related to indoor environments in order to assess how
well a confidence measure performs when dealing with data
entirely different from that analyzed during the training phase.
In this case, we set 7 = 1. Once again we can notice that
O1 surmounts any conventional confidence measure as well as
any method based on random-forest highlighting once again
the effectiveness of extracting features in the disparity domain.
Moreover, it also outperforms PBCP with SGM. On the other
hand, the table also shows that O2 always has worse perfor-
mance compared to O1 although O2 is always more effective
than ENS, GCP and, excluding SGM, LEV. Concerning PSM-
Net, we can notice how its accuracy is lower on Middlebury
because of the very different image content compared to KITTI
2012, used for fine-tuning the network. In particular, it also
seems much more challenging for the confidence measures to
find outliers, achieving AUC scores 5x higher compared to
KITTI 2015 than optimal values, while the gap is lower for the
experiments with traditional stereo algorithms. It is worth not-
ing that in this experiment, O2 turns out even more accurate
than deep learning approaches.

The outcomes of Table 1 indicate that O2 is potentially more
effective than O1 but, at the same time, less capable of gener-
alizing to new environments. This aspect will be further dis-
cussed in the remainder. Two leading causes can explain the
different behaviors of O2 and O1: the more substantial amount
of support ‘W; and the additional features DLB and UC. Thus,
we trained and tested an ablated version of O2 excluding these
latter two features. With this setting, O2 achieves average AUC
values of 12.99, 3.49, 3.16 and 0.40 respectively, with CEN-
SUS, SGM, MC-CNN and PSM-Net on KITTI 2012 slightly
worse than those obtained with the full feature vector fy, re-
ported in Table 1. With the same four methods a similar be-
haviour is also confirmed on KITTI 2015 — average AUC val-
ues of 11.23, 3.08, 3.17 and 1.19 respectively — and Middle-
bury v3 — average AUC values of 12.37, 7.90, 6.90 and 10.39
respectively — as can be inferred comparing such results with
those reported in Table 1. This analysis highlights that DLB and
UC positively contribute to the overall O2 performance. How-

ever, the main difference between the outcome of O1 and O2 is
mostly given by the different amount of support W; included
in the feature vector fp;.

5.2. Runtime analysis

Concerning the execution time, with a KITTI image at 1241x
376 resolution, using a single core on a standard PC our unop-
timized code implemented in C++ and OpenCV takes few mil-
liseconds for PKRN and LRD, about 30 sec for ENS, 5 sec
for GCP, 15 sec for LEV and 3.5 sec for Ol and O2. Re-
garding PBCP, CCNN and LGC, deploying high-end Titan X
GPUs the execution times are, respectively, about 0.5, 0.1 and
0.7, rising to about 10 sec on CPU. It is worth to point out
that for O1 and O2 the overall computing time is dominated by
features computation that can be reduced according to known
techniques in the literature, such as histogram optimization (?)
and box-filtering (Di Stefano et al., 2004), and further accel-
erated exploiting massive parallelism, provided for instance by
GPUs. Moreover, deploying the same strategy, random forest
frameworks can achieve significant speedup on GPUs as well
as reported in (Grahn et al., 2011).

5.3. Impact of training data and generalization

A relevant aspect concerns how well a confidence measure
can generalize across different datasets or, from a different
point of view, how it can take advantage from training data sim-
ilar to that found in the testing environment. The capability to
generalize to new environments is a relevant aspect and for this
reason we further assess the behavior of O1 and O2 on KITTI
2012 and Middlebury v3 with and without ad hoc training on
a subset of images similar to the target dataset. That is, for Ol
and O2 we report the results achieved with two distinct train-
ing configurations: the usual 20 stereo pairs of the KITTI 2012
dataset, as before, and for a fair comparison on an equivalent
amount of training samples extracted from Middlebury stereo
pairs Adirondack, Vintage, Jadeplant, Motorcycle, Piano, Pipes
and Playroom not used for the evaluation. With this training
configurations, we cross-evaluate O1 and O2 on both Middle-
bury and KITTI 2012.

Figure 3 reports on top the AUCs on a subset of Middle-
bury v3 images, from top to bottom with CENSUS, SGM, MC-
CNN and PSM-Net. As we can notice, for each stereo algo-
rithm and confidence measure training on Middlebury yields
more accurate results compared to those achieved by training
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Fig. 3. Generalization capability for O1 and O2. Target dataset is a subset
of Middlebury v3. We train on images similar to target domain (bright) or
from different datasets (dark).

on KITTI 2012 and this fact is indeed not surprising. However,
we can notice how O2 accuracy is notably improved by train-
ing on more similar data thus always leading to much better
results compared to O1 in the same configuration. This exper-
iment highlights once again the better effectiveness of O2 at
the cost, however, of a worse generalization capability across
very different scenarios as can be inferred comparing the plots
of Figure 3 with the results reported on the right part of Table
1. Nonetheless, we can also notice how, by training on more
similar data, the gain in accuracy is quite significant for both
confidence measures with all stereo algorithms.

Figure 4 reports the same evaluation by assuming, in this
case, KITTI 2012 as target dataset for testing. We compare
the AUCs obtained by random forest methods trained on Mid-
dlebury and KITTI 2012 datasets. We can see how training on
Middlebury allows the O2 measure to achieve better estimation
accuracy compared to O1. This outcome can be explained by
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Fig. 4. Generalization capability for O1 and O2. Target dataset is a subset
of KITTI 2012. We train on images similar to target domain (bright) or
from different datasets (dark).

looking at the nature of the considered datasets: while all sam-
ples from KITTTI depict similar environments with a low vari-
ety of contexts, Middlebury v3 collects many different indoor
setups hence providing more heterogeneous training samples as
already pointed out by Spyropoulos and Mordohai (2016). Fi-
nally, we can notice how the same behaviour is observed, in
both cases, when processing disparity map inferred by PSM-
Net.

From this analysis we can draw some conclusions: compared
to O1, the O2 measure is a more effective confidence estimator
but has worse generalization capability across different datasets
when heterogeneous data are not available for training. There-
fore, when the specific environment on which the measure will
be deployed is similar to the training data, O2 is the best confi-
dence measures based on random forest and it even represents
a valid alternative to much more computationally demanding



KITTI2012 KITTI2015 Middlebury v3

(bad3) (bad3) (badl)

SGM (Hirschmuller, 2008) 9.25 8.33 21.92
(Park and Yoon, 2015) + LEV 8.88 (7) 7.92(7) 21.92 (7)
(Park and Yoon, 2015) + O1 8.87 (6) 7.54 (5) 21.50 (6)
(Park and Yoon, 2015) + O2 8.52 (5) 7.34 (3) 21.27 (5)
(Park and Yoon, 2015) + LGC 8.50 (2) 7.30 (1) 21.17 4)
(Seki and Pollefeys, 2016) + PBCP | 9.24 (11) 8.24 (11) 21.90 (8)
(Seki and Pollefeys, 2016) + Ol 9.16 (10) 8.25(10) 21.95(10)
(Seki and Pollefeys, 2016) + O2 9.05(9) 8.25(9) 21.96 (11)
(Seki and Pollefeys, 2016) + LGC 9.04 (8) 8.24 (8) 21.92 (9)
sSGM + O1 8.52 (4) 7.54 (5) 20.78 (3)
sSGM + 02 8.30 (2) 7.37 (4) 20.65 (2)
sSGM + LGC 8.26 (1) 7.31(2) 20.41 (1)

Table 2. Comparison of different machine-learning variants of SGM using
a variety of measures on KITTI 2012, 2015 and Middlebury v3.

deep learning-based methods PBCP, CCNN and LGC. How-
ever, if a more general purpose confidence estimator to deal
with scenes quite different from those seen in the training phase
is desired, O1 represents a better solution since it is very accu-
rate on average across different datasets and more effective than
other learning-based method deploying random forests.

5.4. Evaluation of SGM variants

In this section, we report a comprehensive evaluation of
the proposed sSGM algorithm compared to existing machine-
learning SGM variants leveraging on confidence measures. In
particular, we compare with the cost modulation approach pro-
posed by Park and Yoon (2015) and the dynamic smoothness
tuning by Seki and Pollefeys (2016). Table 2 reports the out-
come of this evaluation on KITTI 2012, KITTI 2015 and Mid-
dlebury v3. We consider the original SGM implementation, the
known variants leveraging both the confidence measures they
were originally coupled to (i.e., LEV and PBCP) as well as O1
and O2 to be fully comparable with our sSSGM. Moreover, we
also show how all the variants perform with the LGC measure
since it is the best method for outliers detection, as shown in
the previous evaluations. For each method we report bad3 for
KITTI datasets and badl for Middlebury v3, respectively the
outliers for 7 = 3 and 7 = 1. In general, we can notice how
using a more effective confidence measure improves the results
of each SGM variant, consistently with the outcome of Table 1,
with LGC constantly improving the effectiveness of each strat-
egy over the other measures, although marginally, except for
Seki and Pollefeys (2016) variant on Middlebury. Moreover,
we point out how sSGM outperforms the two competitors most
of the times when deploying the same confidence measure, ex-
cept for KITTI 2015 where Park and Yoon (2015) outperforms
it by a negligible margin (0.03%) deploying O2.

6. Conclusions

In this paper, we have proposed a strategy to infer match re-
liability from features extracted in the disparity domain and in
constant time. In contrast to state-of-the-art approaches based
on a random forest, our proposal does not require at all the
cost volume thus making it deployable with any stereo setup
for dense disparity estimation. According to the exhaustive
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evaluation on standard datasets and algorithms reported, it al-
lows to obtain more accurate confidence estimation compared
to methods based on random forests and even compares favor-
ably to much more computationally demanding strategies based
on CNNs. We have also introduced a novel strategy to improve
stereo accuracy taking advantage of accurate confidence esti-
mators proposed. The proposed sSGM yields overall better ac-
curacy compared to previous variants of SGM in the literature.
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